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Many practical built-up structures, e.g., the modern car body, are essentially assemblies of
numerous thin plates joined at many edges. The plates are often so thin that they cannot
support appreciable loads out of plane. In the case of a car, the body can only support the
static loads of either the vehicle or the engine using the substantial in-plane sti!ness of the
plates. During operation of the vehicle, the dynamic loads applied to the body by the engine
and suspension also act in-plane so that the vibrational power injected into the body is
controlled by the in-plane properties. The paper argues that under such conditions, the
vibrational response of the structure must be dominated by the mobility of long wavelength
in-plane waves. To investigate this hypothesis, a six-sided thin-plate box excited by a force at
a sti! point where two sides meet is chosen as the test structure. A "nite element model of the
box is constructed from membrane elements which accommodate only in-plane response.
Predictions of the input and transfer frequency response of the box are compared with
laboratory measurements with favourable agreement. The "nite element model is
advantageous because it has relatively few degrees of freedom making it computationally
attractive, yet remains valid over very broad frequency ranges. It could therefore be used
during the preliminary stages of the design of a practical thin-plate built-up structure.

( 2000 Academic Press
1. INTRODUCTION

This paper presents a "nite element model which predicts the frequency response of
a six-sided thin-plate box using only its in-plane motion. The model is targeted at
engineering applications which require the vibration analysis of built-up thin-plate
structures such as a car body.

The modern car body is essentially an assembly of thin plates joined at many edges. The
plates are so thin, typically less than 1)5 mm [1], that they cannot support appreciable loads
out of plane. In particular, they can only support the static loads of either the vehicle or the
engine using their substantial in-plane sti!ness. During operation of the vehicle, the
dynamic loads applied to the body by the engine and suspension also act in-plane so that the
vibrational power injected into the body must be controlled by the in-plane properties [2].
Speci"cally, the injected power is carried from the engine and suspension attachment points
by long-wavelength in-plane quasi-longitudinal and in-plane shear waves [3]. The high
in-plane sti!ness of the plates means that these waves propagate with high-phase speeds
throughout the structure and in doing so impinge on the numerous joints between plates. At
these joints the in-plane waves generate other in-plane waves as well as #exural waves in
adjoining plates. The #exural waves have much shorter wavelengths than the in-plane
022-460X/00/170449#23 $35.00/0 ( 2000 Academic Press
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waves on account of the small #exural sti!ness of the plates. Some of the energy of the
long-wavelength in-plane waves is used to generate the short-wavelength #exural waves
which therefore damp the long-wavelength response. In this manner, the vibrational "eld in
the car body develops into a complicated mixture of long- and short-wavelength waves [4].
Henceforth for brevity, the terms long wave and short wave will be used instead of
long-wavelength wave and short-wavelength wave respectively.

The relative proportions of the total power carried by the two waves depend on the
inherent damping of the long waves (e.g., the material loss factor) and the amount of
coupling between the two waves at the structural joints. This means that the damping of the
long waves can be increased if more energy can be transmitted to the short waves. This is
particularly signi"cant in the car body where the inherent damping of the long in-plane
waves is usually quite low because the structure is damped using loosely "tting treatments
such as rubber foam and carpet. These have little impact on the in-plane waves since both
the interfacial pressure and the coe$cient of friction between the treatments and the
structure are small [5].

Of course, the engine and suspension are not the only sources of vibration in a modern
car. In general, noise and vibration originates from the power train, road surface excitation
of the tyres and suspension, and aerodynamic excitation of the body [6]. These sources
include both a random contribution from road and aerodynamic excitation together with
a tonal contribution from the power train. Below 500 Hz the structural vibration of the
body and the sound pressure level inside the passenger compartment are dominated by
transmission of the second order harmonic of the engine speed through the engine isolators
and from transmission of road vibration through the suspension mounting points [7]. At
present, car manufacturers use "nite element models of a car body with upwards of 250 000
degrees of freedom to predict the structural vibration [8]. These models, which include both
in-plane and #exural motion, predict the lowest modes of the car body up to about 100 Hz
and typically require overnight run times even on the fastest super-computers presently
available. Consequently, the analysis times and costs involved in re"ning the body design to
meet desired interior and exterior noise targets are gargantuan. However, the previous
description of the dynamics of the long and short waves in a built-up structure suggests that
in the region below 500 Hz where the structural excitation is dominated by transmission
from the engine and suspension, the structural response can be estimated using only the
dominant in-plane motion. Moreover, because the in-plane wavelengths are so much
greater than the #exural wavelengths, a "nite element model which accommodates only
in-plane motion will require far fewer elements (and thus degrees of freedom) than the model
which accommodates both in-plane and #exural motion. Of course, such an in-plane model
is unlikely to be as accurate as a model which includes both in-plane and #exural motions.
Nevertheless, it should prove cost-e!ectiveness during preliminary design stages.

To investigate the hypothesis that a "nite element model which accommodates only
in-plane motion can estimate the response of a built-up structure, a six-sided thin-plate
perspex box shown in Figure 1 is chosen as the test structure. The box is driven at the
mid-point of one joint by a point force as shown. This force acts in the plane of one of the
plates and normal to the plane of the other plate, thereby replicating the direct excitation of
a car body by the engine and suspension. The geometry of the box in Figure 1 was
determined from two considerations. First, the plates were kept #at so that in-plane and
#exural waves travelling in their interior are uncoupled [3]. Second, the overall dimensions
of the box were determined from the current limit in the vibration analysis of internal
combustion engines which is currently around 3 kHz [9]. It would be useful if the in-plane
model could be analyzed as far as this frequency in order to provide greater scope for future
applications. Because of the di!erences in the phase speeds of waves in perspex and steel



Figure 1. Sketch of the thin-plate perspex box driven by a point harmonic force at the middle of one edge where
two sides meet. All sides are 5 mm thick. The material properties are given in Table 1.
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plates, analysis at 3 kHz of a 1 mm thick steel plate box with sides of length 2 m (dimensions
which are characteristic of a car body [1]) is equivalent to the analysis of a perspex box with
sides of length 0)35 m at 6 kHz. Thus, the in-plane "nite element model of the perspex box
will be analyzed up to 6 kHz.

The objective of the paper is to present a "nite element model of the box which
accommodates only in-plane motion and compare its predictions of input and transfer
frequency response with laboratory measurements. The layout of the paper is as follows.
Section 2 examines the characteristic mobilities of the di!erent waves which may propagate
in the box and shows that the long in-plane waves control both the power injected into it
and the power transmitted around it. Section 3 quanti"es the dissipation of energy in the
structure by examining a balance between the inherent damping of the in-plane waves
and the power transmitted to the short #exural waves at the structural joints. Section
4 details the construction of a "nite element mesh which accommodates only the in-plane
motion of the box. Section 5 describes the laboratory measurements and section 6
compares these measurements with the input and transfer frequency response functions
predicted by the "nite element mesh.

2. THE CHARACTERISTIC MOBILITIES OF A THIN-PLATE BOX

This section begins by describing the waves which can propagate in a thin uniform plate.
These waves are then used to characterize the mobilities of the perspex box.

2.1. WAVENUMBERS FOR WAVES IN A THIN PLATE

For harmonic excitation with time dependence e+ut where u is the radian frequency, the
wavenumber k

LI
for quasi-longitudinal waves [3] in a thin plate of thickness t is
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TABLE 1

¹ypical material properties of steel and perspex

Material Steel Perspex

Young's modulus (GN/m2) 210 4)7
Density (kg/m3) 7850 1192
Poisson's ratio 0)3 0)3
Loss factor 0)001 0)05
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where E, o, l are the Young's modulus, density and Poisson's ratio respectively and mA
p
is the

plate mass per unit area (see Appendix A for list of symbols). The in-plane sti!ness D
LI

is
very high and so quasi-longitudinal waves have high phase speeds. A thin uniform plate can
also carry in-plane shear waves having a wavenumber k

s
and sti!ness D
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Both waves are non-dispersive and are sometimes called high impedance waves.
The wavenumber k

FI
for Euler}Bernoulli #exural waves in the plate is
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where D
FI

is the sti!ness per unit width. The phase speed of Euler}Bernoulli waves is

generally much less than either of the in-plane waves but rises with Ju because #exural
waves are dispersive. They are sometimes called low impedance waves.

Figure 2 shows dispersion curves for all three wave types in 1 mm steel and 5 mm perspex
plates having the material properties of Table 1. Figure 2 shows that at any frequency, the
quasi-longitudinal wave has the lowest wavenumber. The in-plane shear wavenumber is
approximately 1)6 times the quasi-longitudinal wavenumber. The #exural wavenumber is
much higher across the bandwidth shown.

For the thin plates being considered here, the ratio of the #exural wavenumber to the
quasi-longitudinal wavenumber is
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This ratio is a function of thickness and decreases with frequency. Applying this relation to
the previously considered steel and perspex plates, for the steel plate at say 1 kHz, the
#exural wavenumber is more than 50 times the quasi-longitudinal wavenumber while for
the perspex plate at the same frequency, the #exural wavenumber is about 15 times the
quasi-longitudinal wavenumber.

2.2. THE CHARACTERISTIC INPUT MOBILITIES OF THE BOX

The thin-plate box of Figure 1 can be viewed as a set of #at plates which meet at right
angles. Along the edges two plates meet and at the corners three plates meet. However, one
can consider the corner to consist of one plate bent into an L-shape and wrapped around



Figure 2. Dispersion curves for the waves in thin uniform in"nite steel and perspex plates having material
properties of Table 1:** in-plane quasi-longitudinal; - .- . - . in-plane shear; ......, #exural. (a) 1 mm mild steel plate;
(b) 5 mm perspex plate.
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another plate. In this way, the corners and edges can be idealized as an assembly of just two
components. Thus, a force applied at any joint as in Figure 1 drives at least one plate in
plane and one plate in #exure. Let the component being driven in plane be called the
in-plane component and the component driven in #exure be called the out-of-plane
component. Both components have width b normal to the joint and thickness t. The
following subsections describe the characteristic mobilities of the in-plane and out-of-plane
components initially when uncoupled, and subsequently when coupled together.

2.2.1. Characteristic mobility of the in-plane component by itself

The in-plane component behaves dynamically like a rod provided that all plane sections
which are normal to its axis remain plane or nearly plane. This occurs when the phase
change across the width of the rod satis"es k

L
b@1 where k

L
is the wavenumber for

longitudinal waves. Its characteristic input mobility >I 1@2=
L

is then [3]
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where c
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is the non-dispersive phase speed for longitudinal waves in a rod.
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At higher frequencies the phase change across the width increases and the in-plane
component behaves increasingly like a plate. The precise input mobility will depend upon
the mode shape across the width but its characteristic mobility tends to that of
a semi-in"nite plate [10]
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The "rst term in this equation is the mobility of a semi-in"nite plate-driven in-plane
carrying quasi-longitudinal waves. The second term accounts for the mobility due to shear
waves. This result has been veri"ed experimentally in reference [2] and will henceforth be
referred to as membrane mobility of the in-plane component.

At higher frequencies still, when the phase change across the thickness of the plate is
signi"cant the plate behaves like a semi-in"nite half-space. For the perspex and steel plates
whose dispersion curves are shown in Figure 2, the transition to half-space behaviour
occurs at 66 kHz (perspex) and 1 MHz (steel) which are far too high to be of interest at
present.

2.2.2. Characteristic mobility of the out-of-plane component by itself

At low frequencies when the phase change across the width of the out-of-plane
component is small, i.e., k

F
b@1 where k

F
is the wavenumber for #exural waves in an

Euler}Bernoulli beam, its characteristic mobility is that of a semi-in"nite beam >I 1@2=
F

[3]:
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Here, m@
b
is the mass per unit length of the beam and c

F
is the dispersive phase speed. This

mobility falls with Ju. At higher frequencies when the width-ways phase change is
signi"cant, the characteristic mobility changes to that of a semi-in"nite plate driven by
a force on its free edge [3]:
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The mobility of equation (8) is a constant and will be referred to as the plate mobility. At
very high frequencies when the through-thickness phase change becomes signi"cant the
beam will deform in transverse shear. The mobility of transverse shear waves is higher than
that of #exural waves [3]. The frequency at which this change in behaviour occurs in the
structures considered here is also very high. For the perspex and steel plates these
frequencies are 20 kHz (perspex) and 200 kHz (steel).

Figure 3(a) compares the characteristic mobilities of the rod, membrane, beam
and plate [equations (5)}(8)] based on the dimensions of the perspex box, and Figure 3(b)
shows these four mobilities for a 1 mm steel box with a side length of 2 m. It can be
seen that in general the beam and plate mobilities exceed those of the rod and
membrane.



Figure 3. The approximate characteristic input mobilities of the two plates meeting at the drive point in
Figure 1 for perspex and steel materials: ** rod; - - -, membrane; - .- . - . beam; ......, plate. (a) Perspex, thickness
5 mm, width 0)395 m; (b) steel, thickness 1 mm, width 2 m.
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2.2.3. Characteristic mobility of the coupled in-plane and out-of-plane components

When the two components are coupled as in Figure 1 along the joint on which the force
acts, their individual impedances add and so the input mobility becomes
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This relationship shows that if either of the component mobilities>I
1
,>I

2
is much larger than

the other, the coupled input mobility will tend strongly toward the lower component
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mobility which constrains the coupled response to its own level. Thus, from Figure 3, it can
be seen that at low frequencies when the component mobilities are those of the rod and
beam, the coupled mobility is
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i.e., it is dominated by the in-plane mobility. At higher frequencies when the component
mobilities are those of the membrane and plate, the coupled mobility is
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i.e., the in-plane mobility still dominates over the frequency range shown. Moreover,
Figure 3 shows that there is in general a large mobility mismatch between the in-plane and
#exural waves. This implies that the amount of energy transferred from one wave type to the
other at joints will be small [11], thereby retaining much of the vibrational energy within
the in-plane waves. Hence, the transmission of vibrational energy around the edge-excited
box (and therefore its transfer mobility to other edges) will also be controlled by the
mobility of the in-plane motion.

The characteristic input mobility of the edge-excited box will be similar to the input
mobility of the two plates meeting at the drive point except that at low frequencies the
mobility will be that of a rigid mass. In the region above the rigid-body response the
characteristic mobility will revert to the membrane mobility of equation (6).

In summary, it can be seen that because the in-plane waves are so much longer than the
#exural waves, the response of the edge-excited box is characterized by its membrane
mobility (or impedance) over a broad frequency range. This is true for both the perspex box
and a practical car body manufactured from 1 mm steel plates.

3. THE DISTRIBUTION OF ENERGY BETWEEN IN-PLANE AND FLEXURAL WAVES IN
THE THIN PLATE BOX

As mentioned in section 1, the energy level of the in-plane waves in a built-up structure is
in#uenced by the inherent material loss factor and the amount of energy which is
transmitted to #exural waves at the joints. An estimate of the relative importance of these
two dissipation processes can be obtained by considering a power balance between the
power input to the box and the power dissipated. Figure 4 shows a two sub-system model of
the box. Sub-system I represents the in-plane waves. Time-averaged power PM

IN
is injected

directly into the in-plane waves from the external excitation. Sub-system F represents the
#exural waves. Assuming that the joints are non-dissipative, power balance requires that
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If the box has roughly equal side lengths ¸ in all three axes, the total energy of the in-plane
motion can be approximated by
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where Ev2
I
E is the spatially averaged mean-square velocity of the in-plane waves.



Figure 4. Model of the energy dissipation mechanisms in a built-up thin-plate structure.

Figure 5. Wavenumber vector triangles for the transmission of in-plane and #exural waves across a joint
between two plates.
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To determine the power transmitted to the plates in #exure PM
IF

consider Figure 5. This
shows one side of the box ABCD carrying an in-plane wave with wavenumber k

S@LI
(where

the subscript implies any in-plane wave type) and one other side ABEF which is shown
carrying a #exural wave k

FI
. At the joint AB these two waves trace match. In general, the

in-plane waves transmit power to the #exural waves which radiate into the four plates
attached at right angles to the plate ABCD. Because the in-plane waves dominate the
mobility at the joints, they act like velocity sources when driving the attached plates in
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#exure. Hence, the total power PM
IF

injected by the in-plane waves into all the #exural waves
across all four edges of each of the six sides of the box can be estimated as
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where ZI @
F

is the impedance per unit length of the plate driven in #exure at the edge AB.
To determine the form of the impedance in equation (14) consider the wavenumbers at

the joint AB. The #exural wavenumber k
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trace-matches with k
z
, i.e.,
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where k
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is the component of the #exural wavenumber normal to the joint. Figure 2 shows

that over the frequency range considered k
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in equation (15). Thus,

the #exural waves radiate into plate ABEF almost normal to the joint AB. This means that
the #exural waves present a locally-reacting impedance to the in-plane waves at the joints
[12]. Now, in the frequency average, all the power transmitted to the #exural waves is
dissipated within the plates. This will be especially valid if the #exural wave loss factor is
high due to attached damping treatments such as those applied to the plates of a practical
car body in an e!ort to increase its damping. The impedance per unit width of the plate into
which the #exural waves radiate can therefore be approximated by the locally-reacting
impedance of a semi-in"nite beam [3] involving wavenumber k
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Thus, the power input to the box at the drive point can be approximated by
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Equation (17) illustrates the balance between the total power injected into the structure, the
power dissipated by the inherent in-plane damping, and the power transmitted to the
#exural waves at the joints. By equating the two terms on the right-hand side of equation
(17), an estimate can be made of the frequency at which the energy dissipated by the
inherent in-plane damping equals that transmitted to the #exural waves at the joints, i.e., the
frequency at which g
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in equation (12). Hence, from equation (17) and

substituting for the #exural wavenumber from equation (3), this frequency f
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Two observations can be made: (i) if the inherent in-plane loss factor is low, the energy lost
to #exural waves is important in damping the in-plane waves below the frequency f

I/F
; and

(ii) if the inherent in-plane damping is low, the dissipation of energy in the structure could
in practice be increased at frequencies below the frequency f

I/F
by increasing the total joint

length.
The frequency f

I/F
is therefore a parameter which can be used to decide on appropriate

vibration control methods. Applying equation (18) to the perspex box with the material
properties of Table 1 and an average joint length of 0)394 m, the frequency below which the
damping produced by transmission to #exural waves is greater than the inherent in-plane
damping is estimated as 4)9 kHz. For a 1 mm steel box with an average joint length of 2 m,
the frequency is over 240 kHz. Of course, a practical car body has a much greater total joint
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length than a six-sided box, so the frequency below which the damping in the structure is
dominated by the power transmitted to #exural waves will be much less than 240 kHz.
Nevertheless, this argument indicates that the damping produced by the transmission of
in-plane energy to #exural waves at joints is important in dissipating the energy of the
in-plane waves in practical structures in the frequency ranges of interest.

4. FINITE ELEMENT ANALYSIS OF THE IN-PLANE MOTION
OF THE PERSPEX BOX

The previous sections established the dominance of the in-plane waves on the response of
edge-excited thin-plate structures. This section describes the construction of a "nite element
model which accommodates only the dominant in-plane vibration.

4.1. WAVE PROPAGATION IN A MEMBRANE

Wave motion in a structure relies on the propagation of energy which is stored in its
material as kinetic and potential energies. The kinetic energy depends on the mass and
velocity. The potential energy depends on the sti!ness and strain. A membrane is a structure
which generally supports only in-plane motion, although it can support out-of-plane
motion if in-plane tension exists [13]. A tensionless membrane cannot support out-of-plane
wave motion because there is no mechanism for storing the appropriate strain energy. This
suggests that if a "nite element model of the perspex box were constructed using membrane
elements which lack #exural sti!ness, #exural wave motion would be eliminated in the
interior of its plates. Of course, at the edges of the box the in-plane motion in one plate will
create out-of-plane motion in any adjoining non-co-planar plate, but this will be unable to
create a propagating wave. The following sections detail the construction of such a "nite
element model.

4.2. MEMBRANE ELEMENT

Finite element analysis programs (see e.g., reference [14]) typically provide
a quadrilateral membrane element with four corner nodes. Each node has three degrees of
freedom, two in-plane and one out-of-plane but there is no sti!ness associated with the
out-of-plane degree of freedom [14]. The shape functions for the in-plane degrees of
freedom are [14]
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where the functions N
i
take the general form
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and u, w are the displacements in the elemental p and q directions respectively. The last two
terms in equation (19) improve the ability of the element to mimic in-plane bending with
e
1
}e

4
being generalized co-ordinates associated with the displacement in the interior of the

element [15]. These terms increase the elemental accuracy without increasing the number of
nodal degrees of freedom but render it non-conforming. The shape function for the
out-of-plane degree of freedom is analagous to those shown in equation (19) but without the
extra terms.

The "nite element program requires values for Young's modulus, density and Poisson's
ratio. The material hysteretic loss factor is speci"ed in terms of the equivalent viscous loss
factor according to the relationship

g"2f. (21)

4.3. MAXIMUM FREQUENCY OF INTEREST AND ELEMENTAL DIMENSIONS

In section 2, Figure 3 demonstrated that the characteristic mobility of the perspex box
was dominated by the in-plane waves up to at least 10 kHz. For the reasons given in section
1, the maximum frequency which was chosen for the "nite element analysis was selected as
6 kHz. This means that both the in-plane quasi-longitudinal and shear waves must be
accurately described at this frequency.

Petyt [15] suggests that in modal analysis a minimum of six linear elements per
wavelength are required to achieve accuracy better than 1% when predicting natural
frequencies. However, it is arguable that this level of accuracy is not required at high
frequencies because the natural frequencies of any practical structure will be sensitive to
geometric and material tolerance [16]. Petyt's results show that an accuracy in natural
frequency prediction of roughly 6% is achievable using four elements per wavelength,
although no comment is made concerning possible enhancement using the extra shape
functions in equation (19). It was therefore decided to use four elements per wavelength for
the mesh of the box.

Since in-plane shear waves have slightly shorter wavelengths than in-plane quasi-
longitudinal waves, the element size must be determined from the shear wavelength at
6 kHz. Using the dispersion curve of Figure 2(b) and the dimensions of the box from
Figure 1, the longest element side wave calculated to be 0.0516 m which represents
a frequency limit of 5961 Hz. However, the quasi-longitudinal waves can actually be
modelled to a higher frequency than the shear waves using this element size. The elemental
edge length means that quasi-longitudinal waves can be modelled up to 10 082 Hz. It was
therefore decided to analyze the model up to 10 kHz. This would provide an interesting
opportunity to observe any change in the performance of the mesh above 6 kHz where the
shear motion was not well described.

4.4. THE FINITE ELEMENT MESH

The "nite element mesh of the box is shown in Figure 6. The numbered arrows indicate
nodes which will be referred to subsequently. The thin lines in the interior of the plates
indicate the element edges. The mesh contained 386 nodes with 1158 degrees of freedom
which is very modest number of degrees of freedom considering the very high bandwidth
over which the predictions are to be calculated. An harmonic force of unit magnitude was



Figure 6. The membrane model of the perspex box. The box is driven by a force at node 1 in the z direction.
Nodes 2}5 are referenced in the text. (a) Front view; (b) rear view.
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applied at node 1 in the z direction. Henceforth, this mesh will be referred to as the
membrane mesh.

The frequency response functions of the box were calculated using forced response
directly because of the small number of degrees of freedom in the mesh. A frequency range of
100 Hz}10 kHz was used with an increment of 10 Hz. The forced response took just 30 min
using a 300 MHz personal computer.

5. LABORATORY MEASUREMENTS ON A PERSPEX BOX

This section describes the procedure used to make laboratory measurements of the input
and transfer accelerance (i.e., the ratio of acceleration to force) of the perspex box.



Figure 7. Photograph of the electrodynamic exciter using a tiny piezo-electric element for the force gauge.
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The perspex box in Figure 1 had been constructed some "ve years before the
present measurements were made. The box had nominal dimensions to the mid-plane of
its sides of 413 mm]395 mm]373 mm with a tolerance of $2 mm. The plate
was nominally 5 mm thick. The sides of the box had been glued together using a
proprietary perspex adhesive called TENSOL [17]. The box was placed on a sheet of
rubber foam on the supporting bench, thereby isolating it from the bench above the
natural frequency created by the mass of the box and the sti!ness of the foam. The
force was applied at the joint between two sides as in Figure 1 to mimic the loading of the
membrane mesh.

The excitation force was applied using two methods. The "rst method used
a conventional impact hammer but the usable frequency range was less than 4 kHz which
was insu$cient to verify the full range of the predictions. The second method used
a lightweight electromagnetic exciter shown in Figure 7. In order to minimize the e!ects of
added mass at the drive-point, this device used a tiny 5 mm]5 mm]3 mm piezo-electric
element as the force gauge. A lightweight BruK el & Kjvr type 4374 accelerometer with a mass
of about 1 g (including the mass of a small length of cable) was attached on the joint close to
the drive point using beeswax. It was not possible to mount the accelerometer exactly at the
drive point because of the presence of the exciter coil and so the accelerometer was located
19 mm along the joint from the centre of the force gauge.

The exciter was driven using a random signal generated by a digital spectrum analyser
which was also used to acquire the measurement data. In all cases, the ordinary coherence
function was checked to ensure the data were of acceptable quality.
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6. PRESENTATION AND DISCUSSION OF RESULTS

This section compares the measurements on the perspex box with the membrane mesh
predictions.

6.1. INPUT ACCELERANCE

Figure 8 compares the predicted input accelerance at node 1 in the z direction with the
measurement made using the exciter. The following observations are made.

(i) The two curves are in good agreement in the region of rigid-body response below
320 Hz.

(ii) Above the anti-resonance at 320 Hz the two curves show a similar sti!ness-like trend
and rise at the same rate. The frequency average value of the measurement is
consistently about 3 dB lower than predicted. There are three prominent resonances
between 800 Hz and 2 kHz which di!er between measurement and prediction by
approximately 5%.

(iii) The measurement shows additional poorly de"ned resonances below 3 kHz which
are not predicted. These resonances can be attributed to #exural waves which of
course the membrane mesh excludes.
Figure 8. Input accelerance at node 1 in the z direction for the perspex box: **, exciter measurement; - . - . -,
membrane mesh prediction; ......, membrane mesh shear limit.
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(iv) Above 2 kHz the measured phase begins to deviate from that predicted. Above 6 kHz
(shown by the vertical dotted line) the measured phase suggests the existence of
a travelling wave. This is most probably due to the small distance between the exciter
and the accelerometer. The di!erence may also be exacerbated by the de"ciency of
the membrane shear motion above 6 kHz.

The agreement between the prediction and the measurement in the rigid-body range means
that the di!erence in the frequency average values above 400 Hz cannot be caused by
a calibration error. In an e!ort to identify the cause of this discrepancy an additional
drive-point measurement was made using an impact hammer to provide the excitation
force. Figure 9 compares this hammer measurement with the predicted input accelerance
from Figure 8. The hammer measurement is restricted to 4 kHz due to limited input force
but predicts the frequency average value more accurately than the measurement with the
electrodynamic exciter. This result suggests that the electrodynamic exciter includes a bias
error.

The hammer measurement also predicts the prominent in-plane resonances more
accurately than the exciter measurement. To investigate this di!erence, a second impact
hammer measurement was made under nominally identical conditions about 2 years after
that shown in Figure 9. Figure 10 compares the "rst and second hammer measurements.
While the rigid-body and frequency average characteristics are identical, there are clear
Figure 9. Input accelerance for the perspex box: **, impact hammer measurement; - . - . -, membrane mesh
prediction; ......, membrane mesh shear limit.



Figure 10. Comparison of the two input accelerance measurements made using the impact hammer;**, 1st
measurement; - . - . -, 2nd measurement.
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di!erences in the values and amplitudes of the prominent resonances. This comparison
indicates that the mechanical properties of the perspex box are time-variant which accords
with observations in reference [13] on structures made from materials similar to perspex. In
this context, the 5% di!erence between the predicted and measured in-plane resonances
observed in Figure 8 is not signi"cant.

Figure 11 compares the characteristic membrane accelerance derived from equation (6),
the imaginary part of the membrane mesh prediction and the measurement made using the
electrodynamic exciter. The following observations are made.

(i) In the rigid-body region below 320 Hz, the imaginary part of the measurement has
some negative values due to inadequate signal from the accelerometer.

(ii) In Figure 11(a), the characteristic accelerance is a good frequency average of the
measurement up to 8 kHz. Above this frequency, the measurement starts to fall
which is expected to be due to the separation of the accelerometer and the exciter and
the e!ects of damping.

(iii) In Figure 11(b), the predicted imaginary part compares quite favourably with the
measurement up to 2)5 kHz with the exception of the #exural resonances which, as
expected, are not predicted. Above 2)5 kHz, the two curves are in reasonable
agreement until 7 kHz whereupon the prediction lies consistently above the



Figure 11. Imaginary parts of the perspex box input accelerance: **, measurement; - . - . -, prediction; .......,
membrane mesh shear limit. (a) Comparison with characteristic membrane accelerance (equation (6)); (b)
comparison with membrane mesh accelerance.
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measurement. This di!erence is expected to be due to the inaccurate modelling of the
shear motion above 6 kHz.

The conclusion from these measurements is that the membrane mesh does estimate the
dominant input accelerance of the perspex box quite accurately, especially in the range in
which the shear motion is modelled su$ciently well. In the region where the shear motion is
not well described the prediction appears to deteriorate, although the degradation in the
performance of the membrane mesh is not particularly marked.

6.2. TRANSFER ACCELERANCES

There are almost as many transfer accelerance predictions as there are degrees of freedom
on the membrane model. In this section, just three transfer accelerances are compared with
measurements made using the electrodynamic exciter. Reference [18] contains additional
measurements.

Figures 12}14 compare the three transfer accelerance predictions and measurements at
nodes 2}4 in the directions shown by the arrows in Figure 6. The locations were chosen to
cover a range of points which were both near to and far from the drive point and which had
various directions relative to that of the excitation force. However, all the locations are



Figure 12. Transfer accelerance to node 2 in the z direction: **, measurement; - . - . -, membrane mesh
prediction; ......, membrane mesh shear limit.
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situated at the edges of the box where the response is expected to be dominated by the
in-plane motion. The following observations of Figures 12}14 are made:

(i) The predicted and measured magnitudes of all three graphs agree well in both the
frequency average sense and at the peak and trough levels. The phase curves are also
in acceptable agreement.

(ii) All the predictions and measurements share a number of prominent in-plane
resonances. In addition, the measurements show poorly de"ned resonances
attributable to #exural waves, but as in the case of the input measurement these
additional resonances are di$cult to resolve above 3 kHz.

(iii) The measurement in Figure 14 shows a resonance at 900 Hz which is not predicted.
This probably represents a torsional mode which occurs in the measurement because
the perspex box is not geometrically perfect.

(iv) All the graphs highlight the 6 kHz frequency above which the membrane mesh shear
motion is expected to be less well described, but none indicate that the mesh degrades
signi"cantly above 6 kHz.

These results strongly support the membrane mesh. The agreement in the peak and trough
levels in all the comparisons suggests that the inherent damping of the in-plane waves is the
dominant dissipation mechanism across the whole frequency range shown. This indicates
perhaps that the analysis of Section 3 has overestimated the frequency below which the



Figure 13. Transfer accelerance to node 3 in the x direction: **, measurement; - . - . -, membrane mesh
prediction; ......, membrane mesh shear limit.

Figure 14. Transfer accelerance to node 4 in the y direction: **, measurement; - . - . -, membrane mesh
prediction; ......, membrane mesh shear limit.
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Figure 15. Transfer accelerance to node 5 in the z direction: **, measurement; - . - . -, membrane mesh
prediction; ......, membrane mesh shear limit.

IN-PLANE RESPONSE OF A THIN-PLATE BOX 469
damping of the structure is controlled by transmission of energy from in-plane to #exural
waves at the joints.

Finally, and merely out of curiosity, it was decided to examine the behaviour of the
membrane mesh in predicting the response at a point whose motion is not expected to be
dominated by the in-plane motion. One such location is the response at node 5 in the
z direction of Figure 6. Figure 15 compares the transfer accelerance predicted by the
membrane mesh at this point with the corresponding measurement. It is clear that the
prediction is woefully inaccurate but of course this is not unexpected because the membrane
model was never intended to predict this type of response.

7. CONCLUSIONS

It has been shown that the built-up thin-plate box structure of Figure 1 when driven by
a force at the edge where two plates meet possesses the following characteristics.

(i) The input response is dominated by the membrane mobility of equation (6) (or
its corresponding impedance). This dominance is due to the much larger
wavelength of the in-plane waves compared to the wavelength of the #exural waves
and has been veri"ed over the frequency ranges encountered in practical thin-plate
structures.
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(ii) Consideration of the dissipation mechanisms in the box and in practical thin-plate
structures generally has shown that the damping produced by the transmission of
in-plane energy to #exural energy at joints is likely to be important in controlling the
in-plane response below a frequency de"ned by equation (18).

A "nite element mesh of the edge-excited box has been constructed using membrane
elements to model only the dominant in-plane motion. Below 6 kHz, four elements per
wavelength were required to model the in-plane shear motion, but the same number of
elements could model the in-plane quasi-longitudinal motion up to 10 kHz due to their
longer wavelengths. In comparison with measurements made on a perspex box using an
electrodynamic exciter to drive the box to 10 kHz, the predicted input and transfer
responses at the edges of the membrane mesh compared very favourably. The
measurements exhibited more resonances than predicted, the additional ones being
attributable to #exural motion which was speci"cally excluded by the membrane
mesh. There was not any appreciable decrease in the level of agreement in the range above
6 kHz in which the in-plane shear motion was not well described. The results suggest
that a membrane mesh of a built-up structure which is excited in-plane at its drive points
can be used to estimate the dominant in-plane response of similarly excited practical
structures.
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APPENDIX A: LIST OF SYMBOLS

b width (m)
c phase velocity (m/s)
D beam sti!ness (N m2); plate sti!ness (N m)
E Young's modulus of elasticity (N/m2)
EM total time-averaged energy of vibration (N m)
f circular frequency (Hz)
j "J!1
k wavenumber (m~1)
L length (m)
m@

b
mass per unit length (kg/m)

mA
p

mass per unit area (kg/m2)
N "nite element shape function
p, q "nite element co-ordinates (dimensionless)
PM time-averaged power (Nm/s)
t time (s); thickness (m)
u, w displacement (m)
v velocity (m/s)
x, y, z general co-ordinates (m)
> structural mobility (m/s/N)
Z@ structural impedance per unit length (N s/m2)
D distance between transducers (m)
e generalized "nite element co-ordinate
f viscous loss factor (dimensionless)
g structural loss factor (dimensionless)
l Poisson's ratio (dimensionless)
o density (kg/m3)
u radian frequency (rad/s)
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